A Proof of Einstein's Effective Viscosity for a Dilute Suspension of Spheres

نویسندگان

  • Brian M. Haines
  • Anna L. Mazzucato
چکیده

We present a mathematical proof of Einstein’s formula for the effective viscosity of a dilute suspension of rigid neutrally–buoyant spheres when the spheres are centered on the vertices of a cubic lattice. We keep the size of the container finite in the dilute limit and consider boundary effects. Einstein’s formula is recovered as a first-order asymptotic expansion of the effective viscosity in the volume fraction. To rigorously justify this expansion, we obtain an explicit upper and lower bound on the effective viscosity. A lower bound is found using energy methods reminiscent of the work of Keller et al. An upper bound follows by obtaining an explicit estimate for the tractions, the normal component of the stress on the fluid boundary, in terms of the velocity on the fluid boundary. This estimate, in turn, is established using a boundary integral formulation for the Stokes equation. Our proof admits a generalization to other particle shapes and the inclusion of point forces to model self-propelled particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscosity of a concentrated suspension of rigid monosized particles.

This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was...

متن کامل

Effective viscosity of dilute bacterial suspensions: a two-dimensional model.

Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes the two terms that are found in the 2D version of Einstein's classical result for passive suspensions. To this, the main result of the paper is added...

متن کامل

Rheology and Structure of Concentrated Suspensions of Hard Spheres. Shear Induced Particle Migration

The apparent shear viscosity, in the non-Browman Ilmit, for a homogeneous suspension of monodispersed hard spheres in systems ranging from dilute to concentrated was previously established. From an estimation of the viscous dissipation. We use the inter-particle distance dependence of the shear viscosity for determining the components of a local stress tensor associated with the transient netwo...

متن کامل

Effect of Sweeteners on Viscosity and Particle Size of Dilute Guar Gum Solutions

The effects of some synthetic sweeteners on the rheological and physical properties of guar gum in dilute solutions were investigated.Measurements include the determination of intrinsic viscosity and the particle size, surface weighted mean [D3, 2], volume weighted mean [D4,3] and specificsurface area ofguar gum andsyntheticsweeteners mixtures. T...

متن کامل

The Effective Density and Viscosity of a Suspension

This paper presents results of a series of experiments on the settling velocity of spheres in twocomponent solid-liquid suspensions. Particular emphasis has been given to the effective values of density and viscosity of the mixture which allows us to describe the settling of the spheres in the mixture using appropriate modifications of the equations valid for the settling of spheres in pure flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2012